Lecture 17. Principles of multiple scattering in the atmosphere. Radiative-transfer equation for solar radiation in a plane-parallel atmosphere.

Objectives:

- 1. Concepts of the direct and diffuse (scattered) solar radiation.
- 2. Source function and a radiative transfer equation for the diffuse solar radiation.
- 3. Single scattering approximation.
- Legendre polynomial expansion of the scattering phase function.

Required reading:

L02: 3.4, 6.1, Appendix E

1. Concepts of the direct and diffuse solar radiation.

 The solar radiation field is traditionally considered as a sum of two distinctly different components: direct and diffuse: I = I_{dir} + I_{dif}

Direct solar radiation is a part of solar radiation filed that has survived the extinction passing a layer with optical depth τ^* and it obeys the Beer-Bouguer-Lambert (extinction) law:

$$I_{dir}^{\downarrow} = I_0 \exp(-\tau^* / \mu_0)$$
 [17.1]

where I_{θ} is the solar intensity at a given wavelengths at the top of the atmosphere and μ_{θ} is a cosine of the solar zenith angle θ_{θ} ($\mu_{\theta} = cos(\theta_{\theta})$).

The direct solar flux is

$$F_{dir}^{\downarrow} = \mu_0 F_0 \exp(-\tau^* / \mu_0)$$
 [17.2]

2. Source function and a radiative transfer equation for the diffuse solar radiation.

Diffuse radiation arises from the light that undergoes one scattering event (single scattering) or many (multiple scattering).

Recall Lectures 2-3 where we have defined the source function

$$J_{\lambda} = (\mathbf{j}_{\lambda, \text{ thermal}} + \mathbf{j}_{\lambda, \text{ scattering}}) / \beta_{e, \lambda}$$

where $\mathbf{j}_{\lambda, \text{ thermal}}$ is the thermal emission ($j_{\lambda, \text{thermal}} = \beta_{a,\lambda} B_{\lambda}(T)$)

and $j_{\lambda, scattering}$ is the re-radiation from multiple scattering.

Using the volume scattering coefficient $\beta_{s,\lambda}$ and the phase function $P(\mu, \phi, \mu', \phi')$, we have

$$j_{\lambda,scattering} (\vec{\Omega}) = \frac{\beta_{s,\lambda}}{4\pi} \int_{\vec{\Omega}'} I(\vec{\Omega}') P(\vec{\Omega}, \vec{\Omega}') d\Omega'$$
 [17.3]

NOTE: Recall the scattering phase function $P(\mu, \varphi, \mu', \varphi')$ (i.e., the element of the scattering matrix P_{11}) represents the angular distribution of scattered energy as a function of direction. By the definition (see Lecture 13), it is normalized as

$$\frac{1}{4\pi} \int_{\Omega} P(\Theta) d\Omega = 1$$

where Θ is the scattering angle

$$cos(\Theta) = cos(\Theta')cos(\Theta) + sin(\Theta')sin(\Theta) \ cos(\varphi' - \varphi) = \mu'\mu + (1 - \mu'^2)^{1/2}(1 - \mu^2)^{1/2} \ cos(\varphi' - \varphi)$$

Scattering of the direct beam is the source of diffuse radiation:

$$J_{dif} = rac{\omega}{4\pi} P(\mu,\phi;-\mu_0,\phi_0+\pi) \; S_0 e^{- au/\mu_0}$$

The boundary condition for diffuse radiation is $I(\infty, \mu, \phi) = 0$ for $\mu < 0$.

Thus the source function for diffuse solar radiation may be written as two components

$$J(\tau,\mu,\varphi) = \frac{\omega_0}{4\pi} \int_{0}^{2\pi} \int_{-1}^{1} I(\tau,\mu',\varphi') P(\mu,\varphi,\mu',\varphi') d\mu' d\varphi' + \frac{\omega_0}{4\pi} F_0 P(\mu,\varphi,-\mu_0,\varphi_0) \exp(-\tau/\mu_0)$$
[17.4]

where the ω_0 is the single scattering albedo and **P** is the scattering phase function.

NOTE: In Eq.[17.4], the first term on the right-hand side shows that the phase function redirects the incoming intensity in the direction (μ ', φ ') to the direction (μ , φ), and the integrals account for all possible scattering events within the 4π solid angle.

- The source function for scattering Eq.[17.4] is more complicated than a thermal source function:
 - It involves conditions throughout the atmosphere, while the thermal source function depends on local conditions only;
 - (ii) The phase function P(μ, φ, μ', φ') may be a very complex function of the directions (and, in general, state of polarization).

Plane-Parallel Solar Radiative Transfer Equation

Mostly we will ignore horizontal variability (assume a plane-parallel atmosphere) and omit thermal emission in the shortwave.

The monochromatic solar radiative transfer equation is then

$$\mu \frac{dI(\mu,\phi)}{dz} = -\beta \left[I(\mu,\phi) - \frac{\omega}{4\pi} \int_0^{2\pi} \int_{-1}^1 P(\Theta) \; I(\mu',\phi') \; d\mu' d\phi' \right]$$

The first term on right is the extinction and the second is the scattering source.

Usually the phase function depends only on the scattering angle Θ :

$$\cos\Theta = \cos\theta\cos\theta' + \sin\theta\sin\theta'\cos(\phi' - \phi)$$

Often we use optical depth as the vertical coordinate:

$$\mu \frac{dI(\mu, \phi)}{d\tau} = I(\mu, \phi) - J(\mu, \phi)$$

Recall the radiative transfer equation defined in Lecture 2 for a plane-parallel atmosphere

$$\mu \frac{dI_{\lambda}(\tau;\mu;\varphi)}{d\tau} = I_{\lambda}(\tau;\mu;\varphi) - J_{\lambda}(\tau;\mu;\varphi)$$

Thus, using the source function for scattering, we can write the **radiative transfer** equation for the diffuse radiation as (omitting the subscript dif in I)

$$\mu \frac{dI(\tau,\vec{\Omega})}{d\tau} = I(\tau,\vec{\Omega}) - \frac{\omega_0}{4\pi} \int_{4\pi} I(\tau,\vec{\Omega}') P(\vec{\Omega},\vec{\Omega}') d\Omega' - \frac{\omega_0}{4\pi} F_0 P(\vec{\Omega},-\vec{\Omega}_0) \exp(-\tau/\mu_0)$$
[17.5]

NOTE: Eq.[17.5] is an integro-differential equation. To solve Eq.[17.5], one needs to know the scattering coefficient $\beta_{s,\lambda}$, absorption coefficient $\beta_{a,\lambda}$ and scattering phase function $P(\mu, \varphi, \mu', \varphi')$ as a function of wavelength in each atmospheric layer.

Eq.[17.5] can be simplified if there is no dependency on the azimuth angle.

For azimuthally independent case, we may define the phase function as

$$P(\mu, \mu') = \frac{1}{2\pi} \int_{0}^{2\pi} P(\mu, \varphi, \mu', \varphi') d\varphi'$$
 [17.6]

Using Eq.[17.6], we may write the azimuthally independent radiative transfer equation for the diffuse radiation

$$\mu \frac{dI(\tau,\mu)}{d\tau} = I(\tau,\mu) - \frac{\omega_0}{2} \int_{-1}^{1} I(\tau,\mu') P(\mu,\mu') d\mu' - \frac{\omega_0}{4\pi} F_0 P(\mu,-\mu_0) \exp(-\tau/\mu_0)$$
[17.7]

➤ To find a solution of the radiative transfer equation for diffuse radiation (i.e., to solve Eq.[17.5]), various approximate and "exact" techniques have been developed:

Approximate methods:

- i) Single scattering approximations (this lecture)
- ii) Two-stream approximations (Lecture 18)
- iii) Eddington and Delta- Eddington approximations (Lecture 18)

"Exact" methods:

- i) Discrete-ordinate technique (Lecture 20)
- ii) Adding-doubling technique (Lecture 21)
- iii) Monte-Carlo technique (Lecture 22)

3. Single scattering approximation.

If light has been scattered only once, the source function from Eq.[17.3] becomes

$$J(\tau,\mu,\varphi) = \frac{\omega_0}{4\pi} F_0 P(\mu,\varphi,-\mu_0,\varphi_0) \exp(-\tau/\mu_0)$$
 [17.8]

and using the solution (derived in Lecture 2) of the radiation transfer in a plane-parallel atmosphere bounded by on two sides at τ =0 and τ = τ *:

for upward intensity (reflected)

$$I_{\lambda}^{\uparrow}(\tau; \mu; \varphi) = I_{\lambda}^{\uparrow}(\tau^*; \mu; \varphi) \exp(-\frac{\tau^* - \tau}{\mu}) + \frac{1}{\mu} \int_{\tau}^{\tau^*} \exp(-\frac{\tau' - \tau}{\mu}) J_{\lambda}^{\uparrow}(\tau'; \mu; \varphi) d\tau'$$

and downward intensity (transmitted)

$$I_{\lambda}^{\downarrow}(\tau, -\mu, \varphi) = I_{\lambda}^{\downarrow}(0, -\mu, \varphi) \exp(-\frac{\tau}{\mu})$$
$$+ \frac{1}{\mu} \int_{0}^{\tau} \exp(-\frac{\tau - \tau'}{\mu}) J_{\lambda}^{\downarrow}(\tau', -\mu, \varphi) d\tau'$$

we can write the solution for diffuse radiation in a single scattering approximation as

$$I_{\lambda}^{\uparrow}(\tau; \mu; \varphi) = I_{\lambda}^{\uparrow}(\tau^{*}, \mu, \varphi) \exp(-\frac{\tau^{*} - \tau}{\mu}) + \frac{1}{\mu} \frac{\omega_{0}}{4\pi} F_{0} P(\mu, \varphi, -\mu_{0}, \varphi_{0}) \int_{\tau}^{\tau^{*}} \exp(-[\frac{\tau' - \tau}{\mu} + \frac{\tau'}{\mu_{0}}]) d\tau'$$
[17.9a]

$$I_{\lambda}^{\downarrow}(\tau;-\mu;\varphi) = I_{\lambda}^{\downarrow}(0,-\mu,\varphi) \exp(-\frac{\tau}{\mu})$$

$$+ \frac{1}{\mu} \frac{\omega_{0}}{4\pi} F_{0} P(-\mu,\varphi,-\mu_{0},\varphi_{0}) \int_{0}^{\tau} \exp(-[\frac{\tau'-\tau}{\mu} + \frac{\tau'}{\mu_{0}}]) d\tau'$$
[17.9b]

Assuming that there is no diffuse downward radiation at the top of the atmosphere

$$I^{\downarrow}(0,-\mu,\varphi)=0$$

and no upward diffuse radiation at the surface (i.e., no reflection from the surface)

$$I^{\uparrow}(\tau^*, \mu, \varphi) = 0$$
 [17.10]

Then from Eq.[17.9a,b] for finite atmosphere of the optical depth $\tau=\tau_*$, we have the reflected and transmitted diffuse intensities

$$I_{\lambda}^{\uparrow}(0,\mu,\varphi) = \frac{\omega_{0}\mu_{0}F_{0}}{4\pi(\mu+\mu_{0})}P(\mu,\varphi,-\mu_{0},\varphi_{0})\left[1-\exp\left(-\tau*(\frac{1}{\mu}+\frac{1}{\mu_{0}})\right)\right]$$
[17.11]

and for μ is NOT equaled to μ_0

$$I_{\lambda}^{\downarrow}(\tau^*, -\mu, \varphi) = \frac{\omega_0 \mu_0 F_0}{4\pi (\mu - \mu_0)} P(-\mu, \varphi, -\mu_0, \varphi_0) \left[\exp\left(-\frac{\tau^*}{\mu}\right) - \exp\left(-\frac{\tau^*}{\mu_0}\right) \right]$$
[17.12]

and for $\mu = \mu_0$

$$I_{\lambda}^{\downarrow}(\tau^*, -\mu, \varphi) = \frac{\omega_0 \tau^* F_0}{4\pi\mu_0} P(-\mu_0, \varphi_0, -\mu_0, \varphi_0) \left[\exp\left(-\frac{\tau^*}{\mu_0}\right) \right]$$
 [17.13]

 For the single scattering approximation, the diffuse intensities are directly proportional to the phase function.

NOTE: the single scattering approximation is valid for the optically thin atmosphere (i.e., small optical depth).

First Order Scattering Solution Example

First order scattering usually implies $\tau^* \ll 1$, so solution simplifies to

$$I_1^{\uparrow}(\mu,\phi) = S_0 \frac{\omega P(\Theta)}{4\pi} \frac{\tau^*}{\mu}$$

Molecular Rayleigh scattering at wavelength $\lambda = 0.7 \,\mu\text{m}$.

Optical depth from molecular scattering formula is $\tau_{mol} = 0.037$.

TOA solar flux at $\lambda = 0.7 \ \mu \text{m}$ is $S_0 = 1400 \ \text{W m}^{-2} \ \mu \text{m}^{-1}$.

Solar geometry: $\theta_0 = 30^{\circ}, \phi_0 = 180^{\circ} \ (\mu_0 = 0.866)$

Viewing geometry: $\theta = 60^{\circ}, \phi = 0^{\circ} \ (\mu = 0.5)$.

Scattering angle is therefore $\Theta = 90^{\circ}$. Rayleigh phase function is

$$P(\Theta) = \frac{3}{4}(1 + \cos^2 \Theta) = 3/4$$

First order solution is then

$$I_1^{\uparrow}(\mu,\phi) = (1400 \text{ W m}^{-2}\mu\text{m}^{-1}) \frac{0.75}{4\pi} \frac{0.037}{0.5} = 6.2 \text{ W m}^{-2}\text{sr}^{-1}\mu\text{m}^{-1}$$

4. Legendre polynomial expansion of the scattering phase function.

The phase function may be numerically expanded in Legendre polynomials with a finite number of terms N as

$$P(\cos\Theta) = \sum_{l=0}^{N} \overline{\omega}_{l}^{*} P_{l}(\cos\Theta)$$
 [17.14]

where Θ is the scattering angle

 $cos(\Theta) = cos(\Theta')cos(\Theta) + sin(\Theta')sin(\Theta) cos(\varphi'-\varphi) = \mu'\mu + (1-\mu'^2)^{1/2}(1-\mu^2)^{1/2} cos(\varphi'-\varphi)$ and ϖ_I^* is the expansion coefficients expressed as

$$\bar{\sigma}_{l}^{*} = \frac{2l+1}{2} \int_{1}^{1} P(\cos\Theta) P_{l}(\cos\Theta) d\cos(\Theta), l=0, 1,...,N$$
 [17.15]

where:

$$\mathcal{P}_0 = 1$$
 $\mathcal{P}_1 = x$ $\mathcal{P}_2 = (3x^2 - 1)/2$ $\mathcal{P}_n(1) = 1$

NOTE: Orthogonal properties of the Legendre polynomials:

$$\int_{-1}^{1} P_k(\cos\Theta) P_l(\cos\Theta) d\cos(\Theta) = 0 \text{ for } l \neq k$$

$$\int_{-1}^{1} P_k(\cos\Theta) P_l(\cos\Theta) d\cos(\Theta) = \frac{2}{2l+1} \text{ for } l = k$$

Eq.[17.14] can be expressed in the terms of associated Legendre polynomials

$$P(\mu, \varphi, \mu', \varphi') = \sum_{m=0}^{N} \sum_{l=m}^{N} \varpi_{l}^{m} P_{l}^{m}(\mu) P_{l}^{m}(\mu') \cos(m(\varphi' - \varphi))$$
 [17.16]

where

$$\sigma_{l}^{m} = (2 - \delta_{0,m}) \sigma_{l}^{*} \frac{(l - m)!}{(l + m)!}$$
 $l = m, ..., N; \quad 0 \le m \le N$

and $\delta_{0,m}$ is the Kronecker delta: $\delta_{0,m} = 1$ for m=0 and otherwise $\delta_{0,m} = 0$.

In similar manner, we may expand the diffuse intensity in the cosine series

$$I(\tau, \mu, \varphi) = \sum_{m=0}^{N} I^{m}(\tau, \mu) \cos(m(\varphi_{0} - \varphi))$$
 [17.17]

Using Eqs.[17.16] and [17.17] and the orthogonality of the associated Legendre polynomials, the equation of the radiative transfer for the diffuse intensity (Eq.[17.7]) splits into (N+1) independent equations in the form

$$\mu \frac{dI^{m}(\tau,\mu)}{d\tau} = I^{m}(\tau,\mu) - (1+\delta_{0,m}) \frac{\omega_{0}}{4} \sum_{l=m}^{N} \varpi_{l}^{m} P_{l}^{m}(\mu) \int_{-1}^{1} P_{l}^{m}(\mu') I^{m}(\tau,\mu') d\mu' - \frac{\omega_{0}}{4\pi} \sum_{l=m}^{N} \varpi_{l}^{m} P_{l}^{m}(\mu) P_{l}^{m}(-\mu_{0}) F_{0} \exp(-\tau/\mu_{0})$$
[17.18]

$m=0 \Rightarrow$ azimuthal independent case:

From Eq.[17.16], the azimuth-independent phase function (defined by Eq.[17.6]) can be expressed as

$$P(\mu, \mu') = \sum_{l=0}^{N} \boldsymbol{\sigma}_{l} P_{l} (\mu) P_{l} (\mu')$$
 [17.19]

For this case Eq.[17.18] simplifies to (omitting the superscript 0 for m=0)

$$\mu \frac{dI(\tau,\mu)}{d\tau} = I(\tau,\mu) - \frac{\omega_0}{2} \sum_{l=0}^{N} \varpi_l^* P_l(\mu) \int_{-1}^{1} P_l(\mu') I(\tau,\mu') d\mu' - \frac{\omega_0}{4\pi} \sum_{l=0}^{N} \varpi_l^* P_l(\mu) P_l(-\mu_o) F_0 \exp(-\tau/\mu_0)$$
[17.20]

Phase Function Examples

Asymmetry parameter - measures degree of forward scattering

$$g = \frac{1}{2} \int_{-1}^{1} P(\cos \Theta) \cos \Theta d \cos \Theta = \omega_1/3$$

Rayleigh phase function:

$$\omega_0 = 1$$
 $\omega_1 = 0$ $\omega_2 = 1/2$ $\omega_l = 0$ $l > 2$

Henyey-Greenstein phase function - often used surrogate for Mie

$$P_{HG}(\Theta) = \frac{1 - g^2}{(1 + g^2 - 2g\cos\Theta)^{3/2}}$$

H-G phase function in forward direction: $P_{HG}(0^{\circ}) = (1+g)/(1-g)^2$. H-G function in backward direction: $P_{HG}(180^{\circ}) = (1-g)/(1+g)^2$. H-G phase function in Legendre polynomials:

$$\omega_l = (2l+1)g^l$$

Comparison of Mie and Henyey-Greenstein phase function with same asymmetry parameter g.